177 research outputs found

    Design and Implementation of an Intelligent Water Regime Detection System

    Get PDF
    An intelligent water regime detection system was designed for water detection. In the designed system, water level is detected by a pressure sensor and water pH is detected by a pH meter. After being processed by the AD chip TLC2543, the data are sent to the MCU via serial communication and the detection result is displayed on OLED screen or Bluetooth mobile phone. The software adopts time-sharing and power-down operation modes, and combines the relay to turn on/off the MCU peripheral circuit to reduce power consumption. The measurement deviations of water level, pH, and voltage were respectively less than 2 mm, 0.1, and 0.01 V and the minimum operating current was less than 6 mA. The low-power, high-precision and intelligent water regime detection is realized by the designed system

    Guided flows in coronal magnetic flux tubes

    Full text link
    There is evidence for coronal plasma flows to break down into fragments and to be laminar. We investigate this effect by modeling flows confined along magnetic channels. We consider a full MHD model of a solar atmosphere box with a dipole magnetic field. We compare the propagation of a cylindrical flow perfectly aligned to the field to that of another one with a slight misalignment. We assume a flow speed of 200 km/s, and an ambient magnetic field of 30 G. We find that while the aligned flow maintains its cylindrical symmetry while it travels along the magnetic tube, the misaligned one is rapidly squashed on one side, becoming laminar and eventually fragmented because of the interaction and backreaction of the magnetic field. This model could explain an observation of erupted fragments that fall back as thin and elongated strands and end up onto the solar surface in a hedge-like configuration, made by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The initial alignment of plasma flow plays an important role in determining the possible laminar structure and fragmentation of flows while they travel along magnetic channels.Comment: 11 pages, 8 figures, accepted for publication, movies available upon request to the first autho

    Needle δ13C and mobile carbohydrates in Pinus koraiensis in relation to decreased temperature and increased moisture along an elevational gradient in NE China

    Get PDF
    A tree's crown interacts with atmospheric variables such as CO2, temperature, and humidity. Physioecology of leaves/needles (e.g. δ13C, mobile carbohydrates, and nitrogen) is, therefore, strongly affected by microclimate in and surrounding a tree crown. To understand the physiological responses of leaves to changes in air temperature and moisture, we measured δ13C, soluble sugars, starch, and total nitrogen (N) concentrations in current year and 1-yr-old needles of Pinus koraiensis trees, and compared the growing season air temperature and relative humidity within and outside P. koraiensis crowns along an elevational gradient from 760 to 1,420ma.s.l. on Changbai Mountain, NE China. Our results indicated that needle N and mobile carbohydrates concentrations, as well as needle δ13C values changed continuously with increasing elevation, corresponding to a continuous decrease in air temperature and an increase in relative humidity. Needle carbon and nitrogen status is highly significantly negatively correlated with temperature, but positively correlated with relative humidity. These results indicate that increases in air temperature in combination with decreases in relative humidity may result in lower levels of N and mobile carbohydrates in P. koraiensis trees, suggesting that future climate changes such as global warming and changes in precipitation patterns will directly influence the N and carbon physiology at P. koraiensis individual level, and indirectly affect the competitive ability, species composition, productivity and functioning at the stand and ecosystem level in NE China. Due to the relatively limited range of the transect (760-1,420m) studied, further research is needed to explain whether the present results are applicable to scales across large elevational gradient

    Neuroprotective Effects and Mechanism of β

    Get PDF
    Emerging evidence suggests that activated astrocytes play important roles in AD, and β-asarone, a major component of Acorus tatarinowii Schott, was shown to be a potential therapeutic candidate for AD. While our previous study found that β-asarone could improve the cognitive function of rats hippocampally injected with Aβ, the effects of β-asarone on astrocytes remain unclear, and this study aimed to investigate these effects. A rat model of Aβ1–42 (10 μg) was established, and the rats were intragastrically treated with β-asarone at doses of 10, 20, and 30 mg/kg or donepezil at a dose of 0.75 mg/kg. The sham and model groups were intragastrically injected with an equal volume of saline. Animals were sacrificed on the 28th day after administration of the drugs. In addition, a cellular model of Aβ1–42 (1.1 μM, 6 h) was established, and cells were treated with β-asarone at doses of 0, 2.06, 6.17, 18.5, 55.6, and 166.7 μg/mL. β-Asarone improved cognitive impairment, alleviated Aβ deposition and hippocampal damage, and inhibited GFAP, AQP4, IL-1β, and TNF-α expression. These results suggested that β-asarone could alleviate the symptoms of AD by protecting astrocytes, possibly by inhibiting TNF-α and IL-1β secretion and then downregulating AQP4 expression

    Thermodynamic entropy as an indicator for urban sustainability?

    Get PDF
    As foci of economic activity, resource consumption, and the production of material waste and pollution, cities represent both a major hurdle and yet also a source of great potential for achieving the goal of sustainability. Motivated by the desire to better understand and measure sustainability in quantitative terms we explore the applicability of thermodynamic entropy to urban systems as a tool for evaluating sustainability. Having comprehensively reviewed the application of thermodynamic entropy to urban systems we argue that the role it can hope to play in characterising sustainability is limited. We show that thermodynamic entropy may be considered as a measure of energy efficiency, but must be complimented by other indices to form part of a broader measure of urban sustainability

    Nitrogen addition impacts on the emissions of greenhouse gases depending on the forest type : a case study in Changbai Mountain, Northeast China

    Get PDF
    Purpose Anthropogenic-induced greenhouse gas (GHG) emission rates derived from the soil are influenced by long-term nitrogen (N) deposition and N fertilization. However, our understanding of the interplay between increased N load and GHG emissions among soil aggregates is incomplete. Materials and methods Here, we conducted an incubation experiment to explore the effects of soil aggregate size and N addition on GHG emissions. The soil aggregate samples (0-10 cm) were collected from two 6-year N addition experiment sites with different vegetation types (mixed Korean pine forest vs. broad-leaved forest) in Northeast China. Carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) production were quantified from the soil samples in the laboratory using gas chromatography with 24-h intervals during the incubation (at 20 degrees C for 168 h with 80 % field water capacity). Results and discussion The results showed that the GHG emission/uptake rates were significantly higher in the micro-aggregates than in the macro-aggregates due to the higher concentration of soil bio-chemical properties (DOC, MBC, NO3-, NH4+, SOC and TN) in smaller aggregates. For the N addition treatments, the emission/uptake rates of GHG decreased after N addition across aggregate sizes especially in mixed Korean pine forest where CO2 emission was decreased about 30 %. Similar patterns in GHG emission/uptake rates expressed by per soil organic matter basis were observed in response to N addition treatments, indicating that N addition might decrease the decomposability of SOM in mixed Korean pine forest. The global warming potential (GWP) which was mainly contributed by CO2 emission (>98 %) decreased in mixed Korean pine forest after N addition but no changes in broad-leaved forest. Conclusions These findings suggest that soil aggregate size is an important factor controlling GHG emissions through mediating the content of substrate resources in temperate forest ecosystems. The inhibitory effect of N addition on the GHG emission/uptake rates depends on the forest type.Peer reviewe
    • …
    corecore